429
Advances in Proteomics Research in Environmental Stress Response in Plants
Rhee, H. W., Zou, P., Udeshi, N. D., Martell, J. D., Mootha, V. K., Carr, S. A., & Ting, A. Y.,
(2013). Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic
tagging. Science, 339, 1328–1331.
Salvato, F., Havelund, J. F., Chen, M., Rao, R. S. P., Rogowska-Wrzesinska, A., Jensen, O.
N., Gang, D. R., et al., (2014). The potato tuber mitochondrial proteome. Plant Physiology,
164, 637–653.
Schutzendubel, A., & Polle, A., (2002). Plant responses to abiotic stresses: Heavy metal‐
induced oxidative stress and protection by mycorrhization. Journal of Experimental Botany,
53, 1351–1365.
Senkler, J., Senkler, M., Eubel, H., Hildebrandt, T., Lengwenus, C., Schertl, P., Schwarzlander,
M., et al., (2017). The mitochondrial complexome of Arabidopsis thaliana. The Plant
Journal, 89, 1079–1092.
Smiri, M., Chaoui, A., & El Ferjani, E., (2009). Respiratory metabolism in the embryonic axis
of germinating pea seed exposed to cadmium. Journal of Plant Physiology, 166, 259–269.
Sommer, T., & Wolf, D. H., (1997). Endoplasmic reticulum degradation: Reverse protein flow
of no return. The FASEB Journal, 11, 1227–1233.
Subba, P., Kumar, R., Gayali, S., Shekhar, S., Parveen, S., Pandey, A., Datta, A., et al., (2013).
Characterization of the nuclear proteome of a dehydration-sensitive cultivar of chickpea
and comparative proteomic analysis with a tolerant cultivar. Proteomics, 13, 1973–1992.
Sun, J., Chen, S. L., Dai, S. X., Wang, R. G., Li, N. Y., Shen, X., Zhou, X. Y., et al., (2009).
Ion flux profiles and plant ion homeostasis control under salt stress. Plant Signaling &
Behavior, 4, 261–264.
Tamburino, R., Vitale, M., Ruggiero, A., Sassi, M., Sannino, L., Arena, S., Costa, A., et al.,
(2017). Chloroplast proteome response to drought stress and recovery in tomato (Solanum
lycopersicum L.). BMC Plant Biology, 17, 1–14.
Tan, Y. F., O’Toole, N., Taylor, N. L., & Millar, A. H., (2010). Divalent metal ions in plant
mitochondria and their role in interactions with proteins and oxidative stress-induced
damage to respiratory function. Plant Physiology, 152, 747–761.
Tanaka, K., & Chiba, T., (1998). The proteasome: A protein‐destroying machine. Genes to
Cells, 3, 499–510.
Taylor, N. L., Heazlewood, J. L., Day, D. A., & Millar, A. H., (2005). Differential impact
of environmental stresses on the pea mitochondrial proteome. Molecular & Cellular
Proteomics, 4, 1122–1133.
Taylor, N. L., Tan, Y. F., Jacoby, R. P., & Millar, A. H., (2009). Abiotic environmental stress-
induced changes in the Arabidopsis thaliana chloroplast, mitochondria and peroxisome
proteomes. Journal of Proteomics, 72, 367–378.
Vera-Estrella, R., Barkla, B. J., Bohnert, H. J., & Pantoja, O., (2004). Novel regulation of
aquaporins during osmotic stress. Plant Physiology, 135, 2318–2329.
Voxeur, A., & Hofte, H., (2016). Cell wall integrity signaling in plants: “to grow or not to
grow that’s the question”. Glycobiology, 26, 950–960.
Waditee, R., Tanaka, Y., & Takabe, T., (2006). Na+ /H+ antiporters in plants and cyanobacteria.
In: Rai., A. K., & Takabe, T., (eds.), Abiotic Stress Tolerance in Plants: Toward the
Improvement of Global Environment and Food (pp. 163–175). Springer: The Netherlands.
Wang, W., Vinocur, B., Shoseyov, O., & Altman, A., (2004). Role of plant heat-shock proteins
and molecular chaperones in the abiotic stress response. Trends in Plant Science, 9, 244–252.