429

Advances in Proteomics Research in Environmental Stress Response in Plants

Rhee, H. W., Zou, P., Udeshi, N. D., Martell, J. D., Mootha, V. K., Carr, S. A., & Ting, A. Y.,

(2013). Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic

tagging. Science, 339, 1328–1331.

Salvato, F., Havelund, J. F., Chen, M., Rao, R. S. P., Rogowska-Wrzesinska, A., Jensen, O.

N., Gang, D. R., et al., (2014). The potato tuber mitochondrial proteome. Plant Physiology,

164, 637–653.

Schutzendubel, A., & Polle, A., (2002). Plant responses to abiotic stresses: Heavy metal‐

induced oxidative stress and protection by mycorrhization. Journal of Experimental Botany,

53, 1351–1365.

Senkler, J., Senkler, M., Eubel, H., Hildebrandt, T., Lengwenus, C., Schertl, P., Schwarzlander,

M., et al., (2017). The mitochondrial complexome of Arabidopsis thaliana. The Plant

Journal, 89, 1079–1092.

Smiri, M., Chaoui, A., & El Ferjani, E., (2009). Respiratory metabolism in the embryonic axis

of germinating pea seed exposed to cadmium. Journal of Plant Physiology, 166, 259–269.

Sommer, T., & Wolf, D. H., (1997). Endoplasmic reticulum degradation: Reverse protein flow

of no return. The FASEB Journal, 11, 1227–1233.

Subba, P., Kumar, R., Gayali, S., Shekhar, S., Parveen, S., Pandey, A., Datta, A., et al., (2013).

Characterization of the nuclear proteome of a dehydration-sensitive cultivar of chickpea

and comparative proteomic analysis with a tolerant cultivar. Proteomics, 13, 1973–1992.

Sun, J., Chen, S. L., Dai, S. X., Wang, R. G., Li, N. Y., Shen, X., Zhou, X. Y., et al., (2009).

Ion flux profiles and plant ion homeostasis control under salt stress. Plant Signaling &

Behavior, 4, 261–264.

Tamburino, R., Vitale, M., Ruggiero, A., Sassi, M., Sannino, L., Arena, S., Costa, A., et al.,

(2017). Chloroplast proteome response to drought stress and recovery in tomato (Solanum

lycopersicum L.). BMC Plant Biology, 17, 1–14.

Tan, Y. F., O’Toole, N., Taylor, N. L., & Millar, A. H., (2010). Divalent metal ions in plant

mitochondria and their role in interactions with proteins and oxidative stress-induced

damage to respiratory function. Plant Physiology, 152, 747–761.

Tanaka, K., & Chiba, T., (1998). The proteasome: A protein‐destroying machine. Genes to

Cells, 3, 499–510.

Taylor, N. L., Heazlewood, J. L., Day, D. A., & Millar, A. H., (2005). Differential impact

of environmental stresses on the pea mitochondrial proteome. Molecular & Cellular

Proteomics, 4, 1122–1133.

Taylor, N. L., Tan, Y. F., Jacoby, R. P., & Millar, A. H., (2009). Abiotic environmental stress-

induced changes in the Arabidopsis thaliana chloroplast, mitochondria and peroxisome

proteomes. Journal of Proteomics, 72, 367–378.

Vera-Estrella, R., Barkla, B. J., Bohnert, H. J., & Pantoja, O., (2004). Novel regulation of

aquaporins during osmotic stress. Plant Physiology, 135, 2318–2329.

Voxeur, A., & Hofte, H., (2016). Cell wall integrity signaling in plants: “to grow or not to

grow that’s the question”. Glycobiology, 26, 950–960.

Waditee, R., Tanaka, Y., & Takabe, T., (2006). Na+ /H+ antiporters in plants and cyanobacteria.

In: Rai., A. K., & Takabe, T., (eds.), Abiotic Stress Tolerance in Plants: Toward the

Improvement of Global Environment and Food (pp. 163–175). Springer: The Netherlands.

Wang, W., Vinocur, B., Shoseyov, O., & Altman, A., (2004). Role of plant heat-shock proteins

and molecular chaperones in the abiotic stress response. Trends in Plant Science, 9, 244–252.